# Resit Exam - Ordinary Differential Equations (WIGDV-07) 

Thursday 2 February 2017, 14.00h-17.00h
University of Groningen

## Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If $p$ is the number of marks then the exam grade is $G=1+p / 10$.

## Problem 1 ( $2+8$ points)

Consider the following differential equation:

$$
y^{\prime}+6 y-y^{2}=9 .
$$

(a) Show that this equation has precisely one constant solution.
(b) Compute a solution satisfying the initial condition $y(0)=2$ and give the largest interval on which the solution is defined.

## Problem $2(3+9$ points $)$

Consider the following differential equation:

$$
\left(x y^{2}-y\right) d x+x d y=0 .
$$

(a) Show that this equation is not exact.
(b) Use an integrating factor of the form $M(x, y)=\phi(y)$ to solve the equation. Express the solution explicitly as a function of $x$.

Problem $3(4+10+4$ points $)$
Consider the linear equation $\mathbf{y}^{\prime}=\left[\begin{array}{cc}t^{-1} & -1 \\ t^{-2} & 2 t^{-1}\end{array}\right] \mathbf{y}$, where $t>0$.
(a) Verify that $\mathbf{y}_{1}(t)=\left[\begin{array}{c}t^{2} \\ -t\end{array}\right]$ is a solution.
(b) Compute a second solution of the form

$$
\mathbf{y}_{2}(t)=\phi(t) \mathbf{y}_{1}(t)+\left[\begin{array}{c}
0 \\
z(t)
\end{array}\right] .
$$

(c) Compute a fundamental matrix $Y(t)$ with the property $Y(1)=I$.

## Problem $4(5+7+4+6$ points $)$

Let $C([0,1])$ denote the linear space of continuous functions $y:[0,1] \rightarrow \mathbb{R}$. This space becomes a Banach space under the norm

$$
\|y\|=\sup _{x \in[0,1]}|y(x)| e^{-\alpha x}, \quad \alpha>0 .
$$

Consider the integral operator

$$
T: C([0,1]) \rightarrow C([0,1]), \quad(T y)(x)=1+\int_{0}^{x} \log \left(1+y(t)^{2}\right) d t
$$

Prove the following statements:
(a) $\left|\log \left(1+y^{2}\right)-\log \left(1+z^{2}\right)\right| \leq|y-z| \quad \forall y, z \in \mathbb{R}$.
(b) $|(T y)(x)-(T z)(x)| \leq \frac{e^{\alpha x}-1}{\alpha}\|y-z\| \quad \forall y, z \in C([0,1]), x \in[0,1]$.
(c) $\|T y-T z\| \leq \frac{1}{\alpha}\|y-z\| \quad \forall y, z \in C([0,1])$.
(d) The initial value problem

$$
y^{\prime}=\log \left(1+y^{2}\right), \quad y(0)=1
$$

has a unique solution on the interval $[0,1]$.

Problem 5 ( $3+4+3$ points)
Let $g(x)$ be a continuous function and consider the following 2nd order equation:

$$
x^{2} u^{\prime \prime}-4 x u^{\prime}+6 u=g(x), \quad x>0 .
$$

(a) Find solutions of the homogeneous equation of the form $u(x)=x^{\lambda}$.
(b) Verify that a particular solution is given by

$$
u_{p}(x)=x^{3} \int_{1}^{x} \frac{g(t)}{t^{4}} d t-x^{2} \int_{1}^{x} \frac{g(t)}{t^{3}} d t
$$

(c) Compute a solution that satisfies $u(1)=1$ and $u^{\prime}(1)=4$.

## Problem $6(10+3+5$ points)

Consider the following semi-homogeneous boundary value problem:

$$
u^{\prime \prime}+u=f(x), \quad u(0)=0, \quad u^{\prime}(\pi)=0
$$

(a) Compute Green's function $\Gamma(x, \xi)$.
(b) Sketch the graph of $\Gamma(x, \xi)$ as a function of $x$ for $\xi=\frac{1}{2} \pi$.
(c) Use Green's function to solve the boundary value problem with $f(x)=1$.

## End of test (90 points)

## Solution of Problem 1 ( $2+8$ points $)$

(a) If $y$ is a constant solution, then $y^{\prime}=0$ so that $6 y-y^{2}=9$, or equivalently, $(y-3)^{2}=0$. Hence, $y(x) \equiv 3$ is the only constant solution.
(2 points)
(b) Method 1: separation of variables. rewriting the differential equation as

$$
y^{\prime}=(y-3)^{2}
$$

we can solve the equation using separation of variables:

$$
\int \frac{1}{(y-3)^{2}} d y=\int d x \Rightarrow-\frac{1}{y-3}=x+C \quad \Rightarrow \quad y=3-\frac{1}{x+C}
$$

## (4 points)

The initial condition $y(0)=2$ gives $C=1$.
(2 points)
The maximal interval of existence is $(-1, \infty)$.
(2 points)

Method 2: Riccati's method. The function $u=y-3$ satisfies the following Bernoulli equation:

$$
u^{\prime}=u^{2} .
$$

This equation be solved directly using separation of variables. Alternatively, the new variable $z=1 / u$ satisfies the following linear equation:

$$
z^{\prime}=-1 .
$$

Solving gives

$$
z=C-x \quad \Rightarrow \quad u=\frac{1}{C-x} \quad \Rightarrow \quad y=3+\frac{1}{C-x}
$$

## (4 points)

The initial condition $y(0)=2$ gives $C=-1$.

## (2 points)

The maximal interval of existence is $(-1, \infty)$.
(2 points)

Solution of Problem 2 ( $3+9$ points)
(a) Define the functions $g(x, y)=x y^{2}-y$ and $h(x, y)=x$. Then $g_{y}=2 x y-1$ and $h_{x}=1$. Since $g_{y} \neq h_{x}$ it follows that the equation is not exact.
(3 points)
(b) The function $\phi(y)$ is an integrating factor if and only if

$$
\frac{\partial}{\partial y}\left[\phi(y)\left(x y^{2}-x\right)\right]-\frac{\partial}{\partial x}[\phi(y) x]=0
$$

or, equivalently,

$$
\phi^{\prime}(y)\left(x y^{2}-y\right)+(2 x y-1) \phi(y)-\phi(y)=0 \quad \Leftrightarrow \quad \phi^{\prime}(y)=-\frac{2}{y} \cdot \phi(y)
$$

Clearly, a solution is given by $\phi(y)=1 / y^{2}$.

## (3 points)

After multiplying the differential equation by $\phi(y)$ it reads as

$$
\left(x-\frac{1}{y}\right) d x+\frac{x}{y^{2}} d y=0 .
$$

Define a potential function by

$$
F(x, y)=\int\left(x-\frac{1}{y}\right) d x+C(y)=\frac{x^{2}}{2}-\frac{x}{y}+C(y) .
$$

This function should also satisfy

$$
F_{y}=\frac{x}{y^{2}} \quad \Rightarrow \quad \frac{x}{y^{2}}+C^{\prime}(y)=\frac{x}{y^{2}} .
$$

We can choose $C(y)=0$.
(3 points)
Finally, the solution is given by

$$
F(x, y)=K \quad \Leftrightarrow \quad \frac{x^{2}}{2}-\frac{x}{y}=K \quad \Leftrightarrow \quad y=\frac{2 x}{x^{2}-2 K} .
$$

## (3 points)

Solution of Problem $3(4+10+4$ points)
(a) We have

$$
A(t) \mathbf{y}_{1}=\left[\begin{array}{lr}
t^{-1} & -1 \\
t^{-2} & 2 t^{-1}
\end{array}\right]\left[\begin{array}{r}
t^{2} \\
-t
\end{array}\right]=\left[\begin{array}{r}
2 t \\
-1
\end{array}\right]=\mathbf{y}_{1}^{\prime}
$$

which shows that $\mathbf{y}_{1}$ satisfies the homogeneous differential equation.
(4 points)
(b) Compute a second solution of the homogeneous equation of the form

$$
\mathbf{y}_{2}(t)=\phi(t) \mathbf{y}_{1}(t)+\left[\begin{array}{c}
0 \\
z(t)
\end{array}\right] .
$$

On the one hand we have that

$$
\mathbf{y}_{2}^{\prime}=\phi^{\prime} \mathbf{y}_{1}+\phi \mathbf{y}_{1}^{\prime}+\left[\begin{array}{l}
0 \\
z^{\prime}
\end{array}\right]=\phi^{\prime} \mathbf{y}_{1}+\phi A \mathbf{y}_{1}+\left[\begin{array}{c}
0 \\
z^{\prime}
\end{array}\right] .
$$

On the other hand we should have that

$$
\mathbf{y}_{2}^{\prime}=A \mathbf{y}_{2}=\phi A \mathbf{y}_{1}+A\left[\begin{array}{l}
0 \\
z
\end{array}\right] .
$$

Therefore we must have

$$
\left[\begin{array}{l}
0 \\
z^{\prime}
\end{array}\right]=A\left[\begin{array}{l}
0 \\
z
\end{array}\right]-\phi^{\prime} \mathbf{y}_{1},
$$

or, equivalently,

$$
\begin{aligned}
0 & =-z-t^{2} \phi^{\prime} \\
z^{\prime} & =2 t^{-1} z+t \phi^{\prime}
\end{aligned}
$$

## (5 points)

Eliminating $\phi^{\prime}$ gives

$$
z^{\prime}=t^{-1} z \quad \Rightarrow \quad z=t
$$

Solving for $\phi$ gives

$$
\phi^{\prime}=-t^{-1} \quad \Rightarrow \quad \phi=-\log t .
$$

Hence, the second solution is given by

$$
\mathbf{y}_{2}=-\log t\left[\begin{array}{c}
t^{2} \\
-t
\end{array}\right]+\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-t^{2} \log t \\
t(1+\log t)
\end{array}\right]
$$

## (5 points)

(c) Since $\mathbf{y}_{1}$ and $\mathbf{y}_{2}$ are linearly independent a fundamental matrix is given by

$$
\widetilde{Y}(t)=\left[\begin{array}{cc}
t^{2} & -t^{2} \log t \\
-t & t(1+\log t)
\end{array}\right] .
$$

Multiplying a fundamental matrix on the right side with an invertible matrix gives again a fundamental matrix. In particular,
$Y(t):=\tilde{Y}(t) \widetilde{Y}(1)^{-1}=\left[\begin{array}{cc}t^{2} & -t^{2} \log t \\ -t & t(1+\log t)\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}t^{2}(1-\log t) & -t^{2} \log t \\ t \log t & t(1+\log t)\end{array}\right]$
is a fundamental matrix that satisfies $Y(1)=I$.
(4 points)

Solution of Problem $4(5+7+4+6$ points $)$
(a) If $y<z$, then by the Mean Value Theorem there exists $c \in(y, z)$ such that

$$
\log \left(1+y^{2}\right)-\log \left(1+z^{2}\right)=\frac{2 c}{1+c^{2}}(y-z)
$$

Taking absolute values gives

$$
\left|\log \left(1+y^{2}\right)-\log \left(1+z^{2}\right)\right|=\frac{2|c|}{1+c^{2}}|y-z|
$$

## (3 points)

Note that

$$
0 \leq(1-|c|)^{2}=1-2|c|+c^{2} \quad \Rightarrow \quad 2|c| \leq 1+c^{2} \quad \Rightarrow \quad \frac{2|c|}{1+c^{2}} \leq 1
$$

which gives the desired inequality.
(2 points)
Note: the last inequality can also be obtained by computing the maximum and minimum of the function $f(t)=2 t /\left(1+t^{2}\right)$.
(b) Let $y, z \in C([0,1])$ and $x \in[0,1]$ be arbitrary. Then

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & =\left|\int_{0}^{x} \log \left(1+y(t)^{2}\right)-\log \left(1+z(t)^{2}\right) d t\right| \\
& \leq \int_{0}^{x}\left|\log \left(1+y(t)^{2}\right)-\log \left(1+z(t)^{2}\right)\right| d t \\
& \leq \int_{0}^{x}|y(t)-z(t)| d t \\
& =\int_{0}^{x}|y(t)-z(t)| e^{-\alpha t} e^{\alpha t} d t \\
& \leq\|y-z\| \int_{0}^{x} e^{\alpha t} d t \\
& =\frac{e^{\alpha x}-1}{\alpha}\|y-z\|
\end{aligned}
$$

(7 points)
(c) By part (b) we get

$$
|(T y)(x)-(T z)(x)| e^{-\alpha x} \leq \frac{1-e^{-\alpha x}}{\alpha}\|y-z\| \leq \frac{1}{\alpha}\|y-z\| .
$$

## (2 points)

Therefore, we have

$$
\|T y-T z\|=\sup _{x \in[0,1]}|(T y)(x)-(T z)(x)| e^{-\alpha x} \leq \frac{1}{\alpha}\|y-z\| .
$$

(2 points)
(d) First we recall Banach's fixed point theorem. Let $D$ be a closed, nonempty subset in a Banach space $B$. Let the operator $T: D \rightarrow B$ map $D$ into itself, i.e., $T(D) \subset D$, and assume that $T$ is a contraction: there exists a number $0<q<1$ such that

$$
\|T x-T y\| \leq q\|x-y\|, \quad \forall x, y \in D,
$$

Then the fixed point equation $T x=x$ has precisely one solution $\bar{x} \in D$. (3 points)
We take $D=B=C([0,1])$ and we let $T: B \rightarrow B$ be as defined above. Part (b) shows that $T$ is a contraction for $\alpha>1$ (we can take $q=\frac{1}{\alpha}$ ). Therefore, all the assumptions of Banach's fixed point theorem are satisfied. This implies that $T$ has a unique fixed point. Noting that
$T y=y \quad \Leftrightarrow \quad y(x)=1+\int_{0}^{x} \log \left(1+y(t)^{2}\right) d t \quad \Leftrightarrow \quad y^{\prime}=\log \left(1+y^{2}\right), \quad y(0)=1$
completes the proof.
(3 points)

Solution of Problem 5 ( $3+4+3$ points)
(a) If $u(x)=x^{\lambda}$, then we find the characteristic equation

$$
\lambda^{2}-5 \lambda+6=0 \quad \Leftrightarrow \quad(\lambda-2)(\lambda-3)=0
$$

of which the solutions are obviously $\lambda=2$ and $\lambda=3$. Hence, $u=x^{2}$ and $u=x^{3}$ are solutions of the homogeneous equation.
(3 points)
(b) Differentiating once gives

$$
u_{p}^{\prime}(x)=3 x^{2} \int_{1}^{x} \frac{g(t)}{t^{4}} d t-2 x \int_{1}^{x} \frac{g(t)}{t^{3}} d t
$$

## (2 points)

Differentiating once more gives

$$
u_{p}^{\prime \prime}(x)=6 x \int_{1}^{x} \frac{g(t)}{t^{4}} d t-2 \int_{1}^{x} \frac{g(t)}{t^{3}} d t+\frac{g(x)}{x^{2}}
$$

## (2 points)

Therefore, it follows that

$$
x^{2} u_{p}^{\prime \prime}-4 x u_{p}^{\prime}+6 u_{p}=g(x) .
$$

(c) The general solution is given by

$$
u(x)=u_{h}(x)+u_{p}(x)=c_{1} x^{2}+c_{2} x^{3}+x^{3} \int_{1}^{x} \frac{g(t)}{t^{4}} d t-x^{2} \int_{1}^{x} \frac{g(t)}{t^{3}} d t
$$

The initial conditions give

$$
c_{1}+c_{2}=1, \quad 2 c_{1}+3 c_{2}=4,
$$

which implies that $c_{1}=-1$ and $c_{2}=2$.
(3 points)

Solution of Problem $6(10+3+5$ points $)$
(a) First we solve the homogeneous differential equation:

$$
u^{\prime \prime}+u=0 \quad \Rightarrow \quad u(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

(2 points)
The solution $u_{1}(x)=\sin (x)$ satisfies the left boundary condition $u(0)=0$.

## (2 points)

The solution $u_{2}(x)=\cos (x)$ satisfies the right boundary condition $u^{\prime}(\pi)=0$.
(2 points)
Their Wronskian determinant is

$$
W=u_{1} u_{2}^{\prime}-u_{1}^{\prime} u 2=-1 .
$$

## (2 points)

Since $p(x) \equiv 1$ the Green's function is given by

$$
\Gamma(x, \xi)= \begin{cases}-\sin (\xi) \cos (x) & \text { if } 0 \leq \xi \leq x \leq \pi \\ -\sin (x) \cos (\xi) & \text { if } 0 \leq x \leq \xi \leq \pi\end{cases}
$$

## (2 points)

(b) We have

$$
\Gamma\left(x, \frac{1}{2} \pi\right)= \begin{cases}-\cos (x) & \text { if } \frac{1}{2} \pi \leq x \leq \pi \\ 0 & \text { if } 0 \leq x \leq \frac{1}{2} \pi\end{cases}
$$

For $0 \leq x \leq \frac{1}{2} \pi$ the we have to draw the graph of the zero function.
(1 point)
For $\frac{1}{2} \pi \leq x \leq \pi$ we have to draw the graph of $-\cos (x)$.
(2 points)
(c) In general we have

$$
u(x)=\int_{0}^{\pi} \Gamma(x, \xi) f(\xi) d \xi
$$

## (2 points)

In particular, for $f(x)=1$ we have

$$
\begin{aligned}
u(x) & =\int_{0}^{\pi} \Gamma(x, \xi) f(\xi) d \xi \\
& =-\cos (x) \int_{0}^{x} \sin (\xi) d \xi-\sin (x) \int_{x}^{\pi} \cos (\xi) d \xi \\
& =-\cos (x)(1-\cos (x))-\sin (x)(\sin (\pi)-\sin (x)) \\
& =1-\cos (x)
\end{aligned}
$$

(3 points)

